Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 752612, 2021.
Article in English | MEDLINE | ID: covidwho-1456293

ABSTRACT

Background: Lymphopenia and the neutrophil/lymphocyte ratio may have prognostic value in COVID-19 severity. Objective: We investigated neutrophil subsets and functions in blood and bronchoalveolar lavage (BAL) of COVID-19 patients on the basis of patients' clinical characteristics. Methods: We used a multiparametric cytometry profiling based to mature and immature neutrophil markers in 146 critical or severe COVID-19 patients. Results: The Discovery study (38 patients, first pandemic wave) showed that 80% of Intensive Care Unit (ICU) patients develop strong myelemia with CD10-CD64+ immature neutrophils (ImNs). Cellular profiling revealed three distinct neutrophil subsets expressing either the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the interleukin-3 receptor alpha (CD123), or programmed death-ligand 1 (PD-L1) overrepresented in ICU patients compared to non-ICU patients. The proportion of LOX-1- or CD123-expressing ImNs is positively correlated with clinical severity, cytokine storm (IL-1ß, IL-6, IL-8, TNFα), acute respiratory distress syndrome (ARDS), and thrombosis. BALs of patients with ARDS were highly enriched in LOX-1-expressing ImN subsets and in antimicrobial neutrophil factors. A validation study (118 patients, second pandemic wave) confirmed and strengthened the association of the proportion of ImN subsets with disease severity, invasive ventilation, and death. Only high proportions of LOX-1-expressing ImNs remained strongly associated with a high risk of severe thrombosis independently of the plasma antimicrobial neutrophil factors, suggesting an independent association of ImN markers with their functions. Conclusion: LOX-1-expressing ImNs may help identifying COVID-19 patients at high risk of severity and thrombosis complications.


Subject(s)
COVID-19/complications , Neutrophils/immunology , Scavenger Receptors, Class E/genetics , Thrombosis/etiology , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Critical Illness , Female , Humans , Interleukin-3 Receptor alpha Subunit/genetics , Interleukin-3 Receptor alpha Subunit/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Scavenger Receptors, Class E/immunology , Thrombosis/genetics , Thrombosis/immunology
2.
Front Cell Infect Microbiol ; 11: 709893, 2021.
Article in English | MEDLINE | ID: covidwho-1403459

ABSTRACT

Highlights: Innate immune activation during Covid-19 infection is associated with pernicious clinical outcome. Background: Coronavirus disease 2019 (Covid-19) is a worldwide threat that has already caused more than 3 000 000 deaths. It is characterized by different patterns of disease evolution depending on host factors among which old-age and pre-existing comorbidities play a detrimental role. Previous coronavirus epidemics, notably SARS-CoV, were associated with increased serum neopterin levels, which can be interpreted as a sign of acute innate immunity in response to viral infection. Here we hypothesize that neopterin may serve as a biomarker of SARS-CoV-2 viral infection and Covid-19 disease severity. Methods: We measured neopterin blood levels by ELISA. Seric concentration was quantified from 256 healthy donors and 374 Covid-19 patients at hospital admission. Enrolled Covid-19 patients were all symptomatic and displayed a large spectrum of comorbidities. Patients were followed until disease resolution or death. Results: Severe and critically ill SARS-CoV-2 infected patients were characterized by a profound exacerbation of immune activation characterized by elevated neopterin blood levels. Systemic neopterin levels above 19nM stratified healthy individuals from Covid-19 patients with 87% specificity and 100% sensitivity. Moreover, systemic neopterin levels above 53nM differentiated non-survivors from survivors with 64% specificity and 100% sensitivity. Conclusion: We propose that neopterin concentration measured at arrival to hospital is a hallmark of severe Covid-19 and identifies a high-risk population of pernicious clinical outcome with a need for special medical care.


Subject(s)
COVID-19 , Neopterin , Critical Illness , Humans
3.
J Allergy Clin Immunol ; 147(6): 2098-2107, 2021 06.
Article in English | MEDLINE | ID: covidwho-1269289

ABSTRACT

BACKGROUND: Markedly elevated levels of proinflammatory cytokines and defective type-I interferon responses were reported in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to determine whether particular cytokine profiles are associated with COVID-19 severity and mortality. METHODS: Cytokine concentrations and severe acute respiratory syndrome coronavirus 2 antigen were measured at hospital admission in serum of symptomatic patients with COVID-19 (N = 115), classified at hospitalization into 3 respiratory severity groups: no need for mechanical ventilatory support (No-MVS), intermediate severity requiring mechanical ventilatory support (MVS), and critical severity requiring extracorporeal membrane oxygenation (ECMO). Principal-component analysis was used to characterize cytokine profiles associated with severity and mortality. The results were thereafter confirmed in an independent validation cohort (N = 86). RESULTS: At time of hospitalization, ECMO patients presented a dominant proinflammatory response with elevated levels of TNF-α, IL-6, IL-8, and IL-10. In contrast, an elevated type-I interferon response involving IFN-α and IFN-ß was characteristic of No-MVS patients, whereas MVS patients exhibited both profiles. Mortality at 1 month was associated with higher levels of proinflammatory cytokines in ECMO patients, higher levels of type-I interferons in No-MVS patients, and their combination in MVS patients, resulting in a combined mortality prediction accuracy of 88.5% (risk ratio, 24.3; P < .0001). Severe acute respiratory syndrome coronavirus 2 antigen levels correlated with type-I interferon levels and were associated with mortality, but not with proinflammatory response or severity. CONCLUSIONS: Distinct cytokine profiles are observed in association with COVID-19 severity and are differentially predictive of mortality according to oxygen support modalities. These results warrant personalized treatment of COVID-19 patients based on cytokine profiling.


Subject(s)
COVID-19 , Cytokines/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL